CC1 Algèbre Durée : 1 h 30 min

L'épreuve est sans document et sans appareil électronique.

Il sera tenu compte du soin, de la rédaction et de la présentation lors de l'évaluation.

Exercice 1. 4 points

Soit $p \in \mathbb{N}^*$ et soient $x_1, \dots, x_p \in \mathbb{R}$.

- 1. Montrer que $(x_1 + x_2 + \dots + x_p)^2 \le p(x_1^2 + \dots + x_p^2)$.
- 2. Etudier le cas d'égalité dans l'inégalité précédente.

Exercice 2. 4 points

Soit (E, \langle , \rangle) un espace euclidien et soit u un endomorphisme de E tel que pour tout $x \in E$, $\langle u(x), x \rangle = 0$.

- 1. Montrer que pour tous $x, y \in E$, $\langle u(x), y \rangle = -\langle x, u(y) \rangle$.
- 2. Montrer que les sous-espaces vectoriels $\operatorname{Ker} u$ et $\operatorname{Im} u$ sont orthogonaux.
- 3. En déduire que $E = \operatorname{Ker} u \stackrel{\perp}{\oplus} \operatorname{Im} u$.

Exercice 3. 13 points

Soit $n \in \mathbb{N}^*$ et soit $E = \mathbb{R}_n[X]$. On note $P_0 = 1, P_1 = X, \dots, P_n = X^n$ les vecteurs de la base canonique de E. Soit $(a_j)_{j \in [0,n]}$ une famille de réels distincts deux à deux.

Pour tout couple (P,Q) d'éléments de E, on pose $\langle P|Q\rangle := \sum_{i=0}^{n} P(a_i)Q(a_i)$.

- 1. Montrer que l'application $(P,Q) \mapsto \langle P|Q \rangle$ est un produit scalaire sur E.
- 2. Soit $P \in E$. Calculer $\langle P|P_0 \rangle$.
- 3. Pour $j \in [0, n]$, on considère le polynôme $L_j = \prod_{k \in [0, n] \setminus \{j\}} \frac{X a_k}{a_j a_k}$.
 - a. Calculer, pour tout couple $(i, j) \in [0, n]^2$, $L_j(a_i)$ (on distinguera les cas i = j et $i \neq j$).
 - b. Montrer que la famille $\mathscr{B} = (L_j)_{j \in \llbracket 0, n \rrbracket}$ est orthogonale pour le produit scalaire $\langle \mid \rangle$.
 - c. En déduire que $\mathcal B$ est une base de E qui est de plus orthonormée.
 - d. Soit $P \in E$. Ecrire la décomposition de P suivant les vecteurs de la base \mathscr{B} .

4. Soit
$$H := \left\{ P \in E \mid \sum_{j=0}^{n} P(a_j) = 0 \right\}$$
.

- a. Montrer que H est un sous-espace vectoriel de E, déterminer son orthogonal H^{\perp} pour $\langle | \rangle$ et préciser les dimensions de H et de H^{\perp} .
- b. Soit $Q \in E$. Déterminer la projection orthogonale de Q sur H^{\perp} et calculer la distance de Q au sous-espace vectoriel H.
- 5. La base orthonormée $\mathcal B$ est-elle la base obtenue par orthonormalisation de la base canonique de E suivant le processus de Gram-Schmidt?